The RepEval 2017 Shared Task: Multi-Genre Natural Language Inference with Sentence Representations
نویسندگان
چکیده
This paper presents the results of the RepEval 2017 Shared Task, which evaluated neural network sentence representation learning models on the MultiGenre Natural Language Inference corpus (MultiNLI) recently introduced by Williams et al. (2017). All of the five participating teams beat the bidirectional LSTM (BiLSTM) and continuous bag of words baselines reported in Williams et al.. The best single model used stacked BiLSTMs with residual connections to extract sentence features and reached 74.5% accuracy on the genre-matched test set. Surprisingly, the results of the competition were fairly consistent across the genrematched and genre-mismatched test sets, and across subsets of the test data representing a variety of linguistic phenomena, suggesting that all of the submitted systems learned reasonably domainindependent representations for sentence meaning.
منابع مشابه
Shortcut-Stacked Sentence Encoders for Multi-Domain Inference
We present a simple sequential sentence encoder for multi-domain natural language inference. Our encoder is based on stacked bidirectional LSTM-RNNs with shortcut connections and fine-tuning of word embeddings. The overall supervised model uses the above encoder to encode two input sentences into two vectors, and then uses a classifier over the vector combination to label the relationship betwe...
متن کاملRecurrent Neural Network-Based Sentence Encoder with Gated Attention for Natural Language Inference
The RepEval 2017 Shared Task aims to evaluate natural language understanding models for sentence representation, in which a sentence is represented as a fixedlength vector with neural networks and the quality of the representation is tested with a natural language inference task. This paper describes our system (alpha) that is ranked among the top in the Shared Task, on both the in-domain test ...
متن کاملLCT-MALTA's Submission to RepEval 2017 Shared Task
We present in this paper our team LCTMALTA’s submission to the RepEval 2017 Shared Task on natural language inference. Our system is a simple system based on a standard BiLSTM architecture, using as input GloVe word embeddings augmented with further linguistic information. We use max pooling on the BiLSTM outputs to obtain embeddings for sentences. On both the matched and the mismatched test se...
متن کاملRefining Raw Sentence Representations for Textual Entailment Recognition via Attention
In this paper we present the model used by the team Rivercorners for the 2017 RepEval shared task. First, our model separately encodes a pair of sentences into variable-length representations by using a bidirectional LSTM. Later, it creates fixed-length raw representations by means of simple aggregation functions, which are then refined using an attention mechanism. Finally it combines the refi...
متن کاملCharacter-level Intra Attention Network for Natural Language Inference
Natural language inference (NLI) is a central problem in language understanding. End-to-end artificial neural networks have reached state-of-the-art performance in NLI field recently. In this paper, we propose Characterlevel Intra Attention Network (CIAN) for the NLI task. In our model, we use the character-level convolutional network to replace the standard word embedding layer, and we use the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017